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Abstract-By Floquet-Bloch theory, the electric and 
magnetic fields are the summation of an infinite number of 
space harmonics, where the harmonics include forward and 
backward propagated harmonics. In this paper, the 
distribution of space harmonics are analyzed at the Bragg 
condition in grating structure of dielectric waveguides.  

  
I. Introduction 

Contra-directional mode coupling in periodic dielectric 
waveguides is important in distributed Bragg reflector (DBR) 
lasers and distributed feedback (DFB) lasers. The geometry of 
the waveguide structure consists of a surface corrugation and 
two uniform dielectric waveguides. Figure 1 illustrates the basic 
geometry of the grating layer with a grating section. In this 
paper, we demonstrate the power distribution in the periodical 
waveguide structure. The Floquet-Bloch theory [1] and the 
Mahmoud-Beal’s are applied to calculate the transmission and 
reflection spectra of the grating structure [2].  

II. PROBLEM FORMULATION 
In the paper, the Floquet-Bloch theory (FBT) is used to 

analyze the periodical waveguide structure [1]. According to 
the Floquet-Bloch theory, the field pattern should consist of an 
infinite number of space harmonics. For the sake of simplicity 
it is assumed that the field is invariant with respect to y. Since 
the field is assumed to propagate in the z-direction, the solution 
of the Floquet-Bloch theory can be expressed as 
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Here K is the grating wavenumber, n is the space harmonic 
order, and i represents the ith layer. The values kzn is the 
complex propagation constant of the nth spatial harmonic. β is 
the propagation constant, α indicates attenuation constant. The 
real part of kzn , βn, is the phase constant of the nth space 
harmonic, and the imaginary part of kzn ,α (α<0), is the 

attenuation constant due to the leakage of the guided-wave 
energy into the substrate and the superstrate regions. As 
expressed in (1) and (2), electric fields in the grating region 
consist of forward harmonics ( fyE and b

fyE ) and backward 
harmonics ( byE and b

byE ).  Consider the vicinity of the first 
Bragg region.  fyE , byE , b

fyE and b
byE  can be written as 
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Figure 1 shows that the fundamental mode (ey) is launched at 

region I towards the grating.  This produces the reflected and 
transmitted fields.  As shown in Fig. 1, T1 and R1 are the 
transmission and reflection coefficients in the grating region, 
while t is the transmission coefficient in region II, and r is the 
reflection coefficient in region O.  The coefficients T1, R1, and t, 
r are determined from the boundary conditions at the input and 
output planes of the grating.   

 
Fig. 1 The basic geometry of the two grating sections. 

 
For the uniform plane wave, the boundary condition at the 

interference z=0 can be expressed as  
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In dielectric waveguide structure, the relationship between r, T1, 
and R1 is obtained by overlapping the boundary condition at 
non-grating and grating layer interfaces. The overlap equations 
are expressed as 
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(10) 
Similar to Equations (9) and (10), we can express the boundary 
condition at the interference z=L. Finally, the coefficients r, t, 
T1, and R1 can be obtained.    

The forward propagated power and the backward propagated 
power in the grating region can be expressed as follows.  
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Fig. 2 The index profile of the periodical waveguide in the research. 

III. RESULTS 
We consider the waveguide structure described in [3], where 

the free space wavelength is 1310 nm. Figure 2 shows the index 
profile of the periodical waveguide structure. We assume that 
there is no material loss in the layers. 

According to the paramaters as discussed above, Fig. 3 shows 
the transmission and reflection spectra of the periodical 
dielectric waveguide, where the grating period (Λ) is 
0.20276985 μm. The 3dB resonant wavelengths range from 
1.3069 μm to 1.3119 μm with a bandwidth of 5x10-3 μm. The 
center resonant wavelength is 1.3094 μm. 

Figure 4 shows the power distribution in the grating region 

with wavelength of 1315nm. The incident power is 1mW, while 
the transmission power and reflection power in non-grating 
regions are 9.9588 x10-1 mW and 4.4765 x10-3 mW, 
respectively. By using Eq. (13) and (14), the transmitted power 
and the reflected power in grating region are 9.9766 x10-3 mW 
and 7.2604 x10-2 mW. The differences between two regions are 
because we use the different method to calculate the power, 
whereas  the relative error is small.   

IV. CONCLUSION 
In this paper, the reflection and the transmission efficiencies 

of periodical dielectric waveguide in a grating region are 
obtained by using the Mahmoud-Beal’s method and the FBT.  

 

 
Fig. 3 The transmission and reflection spectra of the periodical 
waveguide with one grating period of 0.20276985 μm (Λ).  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 4 The calculated power in the non-grating region and the grating region 
with wavelength of 1315nm.  
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