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Abstract—Optical 3D simulations in many-query and real time
contexts require new solution strategies. We study an adaptive,
error controlled reduced basis method for solving parametrized
time-harmonic optical scattering problems. Application fields are,
among others, design and optimization problems of nano-optical
devices as well as inverse problems for parameter reconstructions,
as they occur, e. g., in optical metrology. The reduced basis
method presented here relies on a finite element modeling of
the problem plus parametrization of materials, geometries and
sources.

I. INTRODUCTION

The challenge for electromagnetic field solvers is typically
efficiency, that is to achieve highly accurate results at low
computation times where the numerical error remains below
some acceptable threshold. The requirements with respect to
computations times become immediately apparent in optimiza-
tions tasks and inverse problems. During the optimization of
a structure typically a large number of computations with
varying parameters has to be performed until the optimal
structure is found. The same holds true for inverse prob-
lems,where measured data are given and structure details have
to be derived. Especially in real time applications, where the
measurement data pop up in a quick sequence, new solution
strategies for a repeated solution of 3D problems are required.
The reduced basis method (RBM) is a method able to cope
with such challenges. In the following we consider the appli-
cation of the reduced basis method to time-harmonic Maxwell
equations. The structure discussed here is a FinFET from the
semiconductor industry. FinFETs are realized on wafers and
measured after manufacturing by optical methods to check
the actual geometrical shape. The measurement consists of an
illumination of an array of periodically placed FinFETs and a
determination of the reflected diffraction orders in dependence
of the wavelength and polarization.

II. REDUCED BASIS METHOD

The basic concepts of the RBM were described in [1] and
first applications to nano-optics have been published in [2],
[3]. Figures 1 and 2 give the geometrical structure of the
FinFETs discussed in the following. In a previous study [4]
we analyzed the same structure, but without application of

the RBM. The entire task consists in the determination of
geometrical parameters of the FinFETs based on the measured
reflected field. In the following we consider the sub-problem
of a real-time solution of the forward problem. This is the key
prerequisite for any fast reconstruction algorithm.

It is assumed that the solution process can be split into an
online and an offline part.

Offline : The part is computational expensive, but it is
done only once as preparation of the online phase. It consists
mainly of the computation of so called snapshots, which are
full 3D solutions, each with respect to a certain parameter
setting. These parameters cover the entire range of parameters
such that all characteristic solutions are contained in the set
of snapshots. This coverage of the parameter space is done
automatically by adaptively controlled Greedy algorithms. The
number of snapshots is typically in the order of 10 . . . 100.
Additionally, a number of pre-computations for the online step
has to be performed.

Online : The actual computation is done online in real
time. Given a point in parameter space, the desired 3D
solution is constructed by a superposition of the precomputed
snapshots. This superposition, sometimes called Galerkin in-
terpolation, requires the solution of a very small linear system
with a dimension in the order of the number of snapshots.
Hence, each online computation requires the inversion of a,
say, 100×100 matrix, which goes extremely fast in comparison
to the solution of the original full system. Moreover, the
design goal of reduced basis methods is to have online costs
completely independent from the size of the original system
used in the offline phase.

III. RESULTS

Fig. 1 shows the FEM-discretized FinFET with its two gates.
For a simple graphical representation of results we consider a
variation in two parameters only: the radii of curvature of the
the Fin and the Gate. The reflected field changes according to
the variation of these curvatures.

The reduced basis method is used to construct an online
algorithm which returns quickly the reflected field depending
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Figure 1. Part of a FinFET, meshed with tetrahedrons, displaying the Fin and
the Gate structure. All geometric quantities like widths, heights, curvatures
(cf. Fig. 2) may be considered as parameters of a scattering experiment.

Figure 2. Cross section showing the Fin (left) and the Gate (right) with their
curvatures, which are the parameters in the reduced basis study.

on the radii and the given wavelength. Fig. 3 shows the corre-
sponding geometrical representation. What is the numerical
effort to compute a single point in the graph of Fig. 3?
Conventionally it corresponds to one full 3D simulation. In the
reduced bases context it corresponds roughly to the inversion
of the reduced matrix with a dimension given by the number
of snapshots.

Figure 3. Norm of the reflected field in dependence of the radii of Gate and
Fin.

The larger the number of snapshots the better the approxi-
mation of the reduced system with respect to the full system.
Tab. I shows convergence in the given situation. The use
of only five snapshots is not sufficient to cover the entire
parameter space, the relative error in the reflected field is about
10%. But already 6 snapshots result in an accuracy acceptable
for the application. Increasing the number of snapshots to 20
decreases the maximal error further, finally to about 2 · 10−8.
A more detailed convergence analysis shows an exponential
convergence.

Table I
CONVERGENZ OF THE REFLECTED FIELD VS. THE NUMBER OF SNAPSHOTS

number of snapshots error
5 9.82e-02
6 8.83e-05
20 1.55e-08

IV. CONCLUSIONS

The reduced basis method deals successfully with many-
query and real-time simulation tasks. The necessary algorith-
mic preparations are relatively high: The discrete Maxwell
operator has to be parametrized in a way that permits effective
offline-online decompositions, here typically discrete empiri-
cal interpolation methods come into play [5], the parameter-
space has to be covered by snapshots with accepted errors
below a pre-defined error threshold, the online phase has to
be organized in a way that the independence of the number of
unknowns of the full 3D problem is ensured. As a result one
gets a very fast, error controlled real time capable procedure
successful in situations where a direct application of the direct
problem would be not realistic.
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